Usage ===== .. role:: python(code) :language: python The Documentation of the functions provides in detail in the *API Documentation* (`mcfit.github.io/pyemcee/doc `_). This Python library creates the MCMC sampling for given upper and lower uncertainties, and propagates uncertainties of parameters into the function You need to define your function. For example:: def myfunc21(input1): result1 = np.sum(input1) result2 = input1[1] ** input1[0] return [result1, result2] and use the appropriate confidence level and uncertainty distribution. For example, for a 1.645-sigma standard deviation with a uniform distribution:: clevel=.9 # 1.645-sigma use_gaussian=0 # uniform distribution from min value to max value for a 1-sigma standard deviation with a Gaussian distribution:: clevel=0.68268949 # 1.0-sigma use_gaussian=1 # gaussian distribution from min value to max value and specify the number of walkers and the number of iterations:: walk_num=30 iteration_num=100 Now you provide the given upper and lower uncertainties of the input parameters:: input1 = np.array([1., 2.]) input1_err = np.array([0.2, 0.5]) input1_err_p = input1_err input1_err_m = -input1_err output1 = myfunc21(input1) output1_num = len(output1) You should load the **pyemcee** library class as follows:: import pyemcee import numpy as np You can then create the MCMC sample and propagate the uncertainties of the input parameters into your defined functions as follows:: mcmc_sim = pyemcee.hammer(myfunc21, input1, input1_err_m, input1_err_p, output1, walk_num, iteration_num, use_gaussian) To determine the upper and lower errors of the function outputs, you need to run:: output1_error = pyemcee.find_errors(output1, mcmc_sim, clevel, do_plot=1) which shows the following distribution histograms: .. image:: https://raw.githubusercontent.com/mcfit/pyemcee/master/examples/images/histogram0.png :width: 400 .. image:: https://raw.githubusercontent.com/mcfit/pyemcee/master/examples/images/histogram1.png :width: 400 To print the results:: for i in range(0, output1_num): print(output1[i], output1_error[i,:]) which provide the upper and lower limits on each parameter:: 3.0 [-0.35801017 0.35998471] 2.0 [-0.37573196 0.36297235] For other standard deviation, you should use different confidence levels:: clevel=0.38292492 # 0.5-sigma clevel=0.68268949 # 1.0-sigma clevel=0.86638560 # 1.5-sigma clevel=0.90 # 1.645-sigma clevel=0.95 # 1.960-sigma clevel=0.95449974 # 2.0-sigma clevel=0.98758067 # 2.5-sigma clevel=0.99 # 2.575-sigma clevel=0.99730020 # 3.0-sigma clevel=0.99953474 # 3.5-sigma clevel=0.99993666 # 4.0-sigma clevel=0.99999320 # 4.5-sigma clevel=0.99999943 # 5.0-sigma clevel=0.99999996 # 5.5-sigma clevel=0.999999998# 6.0-sigma